
Local Console Alarms
Alarms on bottom line

R. Goodwin
Mon, Jul 28, 2003

Local Consoles can optionally (via option switch on Crate Utility Board) display alarm 
messages on the bottom line of the small screen display. Since there is only a single line 
available for this purpose—shared by the Small Memory Dump feature—complications arise 
due to the fact that the message must be displayed long enough to be noticed by a human. 
This note describes the current scheme for handling such display messages.

Options
Three options relate to local alarms encoding and display. They are set via certain Bit#s.

00A4: Enable analog alarms to be included for local display.
00A3: Encode and output alarm message to serial port.
00A2: Encode and display alarm message on bottom line of screen.

For no local alarms encoding, Bits 00A2 and 00A3 should be off. When Bit 00A4 is off, only 
binary and comment alarms are encoded for local handling. For messages which are written to 
the serial port, the time-of-day associated with the alarm message is included. (The small 
screen does not have room to include the time-of-day, but it does indicate a “>” mark to show 
that the single message shown is fresh.)

Alarm message queuing
All messages that are destined to be sent to the network pass through the Output Pointer 

Queue, or OUTPQ. This includes data requests, settings, answers, and alarm messages 
generated by the Local Station. It can also include alarm messages generated by another 
station if those alarm messages are received by the Local Station. In that case, they are merely 
passed to the OUTPQ but marked (by setting the “used” bit in the queue entry) as having 
already been sent to the network so they aren’t sent again.

The QMonitor Task monitors all entries placed in the OUTPQ. It first monitors the entries to 
see that they have been transmitted to the network. If they take too long, they time out, in 
order that the queue traffic is not stalled. The time-out period is about 1 second.

After the entries have been delivered to the network, QMonitor scans the entries to check for 
alarm messages that should be locally displayed. If the message is an alarm message that 
should be displayed on the small screen, the message is encoded and passed to ADspQEnt. 
This routine could be declared as follows:

Function ADspQEnt(row,col: Integer;
VAR dspText: Chars32;
nChars, nCycles: Integer): Integer;

The row and col parameters indicate the position on the screen for the displayed message. 
The dspText is the array of characters to be displayed. The nChars is the number of 
characters in the text. The nCycles is the delay in cycles to allow time for the message to be 
read before it is permitted to be overwritten by a new message. For alarm messages, the 
following constant values are used:

row= 15
col= 0
nChars= 32
nCycles= 30

The function value is an error status code with these possible values:
0: No errors.
1: Cannot allocate ADSPQ.



2: nChars zero or negative.
3: Cannot allocate text message block.
4: Bad ADSPQ header.
5: ADSPQ full. Cannot accept message.

The other call that QMonitor makes every cycle is to ADspQMon, which monitors the Alarm 
Display Queue to update the screen as needed and show the queued messages on the screen 
for the time designated. It has no arguments and no function return, although it can report 
errors through the ADSPQ header as follows:

6: Invalid OUT ptr.
7: Unexpected memory block type.

Structure of ADSPQ
The queue is created by ADspQEnt the first time it is called, and a system global variable is 

set to point to it. It currently has room for 124 entries. At 2 seconds per message displayed (30 
cycles @ 15 Hz), it would take 4 minutes to empty a queue that was full. The queue header has 
the following structure:

IN OUT Limit Start

INErrs OUTErrs LastErr #entries

When the queue is initialized, IN and OUT and START are all set equal to the size of the header 
(16 bytes). LIMIT is set to the size of the queue, which is the size of the header plus the 
product of the number of entries (124) and the size of each entry (4 bytes). With these values, 
the size of the queue is 512 bytes. The other 4 words in the header are cleared.

ADspQEnt places a new entry into the queue and advances the queue’s IN ptr, an offset to the 
next entry to be used. ADspQMon processes and removes entries from the queue as required 
and advances the OUT ptr. When the OUT ptr reaches LIMIT, it is reset to the START value. 
When it reaches equality with IN, the queue is empty.

Diagnostics are included which count errors detected by both ADspQEnt and ADspQMon. The 
last error code is also recorded as is the total number of entries placed into ADSPQ.

The entry placed into ADSPQ is a pointer to a text message block whose format is as follows:

blkSize msgText #chars blkType

row col delay count

msgText:

etc.

0:

8:

The first word is the allocated block size, the second is the offset to the message text, the third 
is the length of the text, and the fourth is the block type 0xA. The next three words denote the 
position for the text on the screen and the delay in cycles allowed for viewing. The next word 
is used to count down the delay. The text to be displayed completes the contents of the block.

Local Console Alarms p. 2



ADspQMon processing
Each entry placed into the ADSPQ by ADspQEnt points to a memory block that it 

allocated. As each block is processed by ADspQMon and displayed for the indicated delay time, 
the block is freed. If the option switch is turned off during the display of messages, the current 
message will time out its delay, and no more messages will appear. Any waiting queue entries 
will be skipped and the associated blocks freed.

When a new message is about to be displayed, the first two characters from the screen are read 
to see if the display area is available. The convention is that the first two characters should be 
blanks to declare this. If they are not blank, the new message is discarded and the block freed. 
This allows the use of the Small Memory Dump when alarm messages on the bottom line are 
enabled without concern that a new message will overwrite the memory data that is 
displayed. When the first character of the address whose memory is to be displayed is typed, 
no new alarms will be written there. When the feature is disabled and the line is blanked, by 
interrupt at the start of the line, new alarms will again be allowed to appear.

After a new message has timed out its delay, two blanks are written at the start of the display 
area to indicate that the message shown is no longer “fresh.” Just before the blanks are written, 
a check is made that the first two characters are still the same characters that were originally 
written there; if they are not, the blanks are not written. This again allows the user to “take 
over” and use the memory dump feature. Current new messages are marked with “> “ in the 
first two characters to indicate a “fresh” message.

Code modularization
In the modern spirit of OOP, “information hiding” principles have been followed in the 

implementation of this alarms display handling. The layout of ADSPQ and the layout of the 
associated message blocks are known only within the new module ADSPQMON which includes 
both routines described herein. QMonitor only knows to pass the messages it wants 
displayed to ADspQEnt and that it must call ADspQMon every cycle.

Serial alarms output
When QMonitor senses that a serial port version of an alarm message is to be produced, 

it only has to call the PrintLn routine with the line of text to be output. Since the serial 
characters are spooled to memory, there is no delay in processing the serial output.

Local Console Alarms p. 3


